

# IV IMMUNOGLOBULIN IN NEPHROLOGY

**DR VILESH VALSALAN**

CONSULTANT NEPHROLOGIST AND TRANSPLANT  
PHYSICIAN

ACADEMIC COORDINATOR - EXTRA CORPOREAL  
NEPHROLOGY GROUP [ECNG]

# INTRODUCTION

- First commercial immunoglobulin product for IVIG was approved in 1980.
- Uses in nephrology :-Desensitization , ABMR, ABOi kidney transplantation, Post transplant infections [BKV].
- Components IV IG :- Immunoglobulin G (IgG) constitutes 95-98% of the preparation. Mainly IgG1 IgA and IgM - present in small amounts, cytokines and soluble receptors.

# ACTIONS AND EFFECTS

## Anti-inflammatory effects



- Modulation of the inflammatory cytokines
- Neutralization of proinflammatory cytokines, chemokines, integrins, anaphylatoxins
- Augmentation of anti-inflammatory cytokines
- Neutralization of bacterial toxins
- Inhibition of neutrophil rolling and adhesion and recruitment into inflammatory tissues
- Suppression of activation and production of NO in polymorphonuclear cells
- Neutralization of activated complement compounds
- Complement compound scavenging
- Anti-inflammatory IgG glycovariants



## Effects on dendritic cells and NK cells

- Inhibition of dendritic cell differentiation and maturation
- Modulation of inflammatory cytokine production
- Modulation and regulation of NK cells

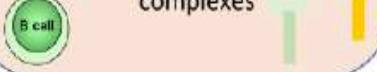


## Effects on apoptosis

- Regulation of apoptosis via anti-Fas antibodies
- Regulation of cell proliferation



## IVIG preparations


### Effects on T cells

- Shifting the effector Th cell balance (Th1 and Th17)
  - Expansion of Tregs
- Inhibition of T cell activation
  - Neutralization of T cell superantigens
- Modulation of T cell-derived cytokine production




### Effects on B cells and antibodies

- Modulation of B cell activation and repertoire
  - Neutralization of autoantibodies via anti-idiotypic antibodies
- Enhanced clearance of autoantibodies
- Solubilization of immune complexes



## Fc receptor-mediated effects

- Blocking Fcγ receptors
- Modulate the affinity of the Fcγ receptors
- Saturation of protective FcRn receptors to enhance the catabolism of autoantibodies
- Saturation of activating Fcγ receptors
- Upregulating of inhibitory FcγRIIIB
- Blocking the uptake of C3b and C4b on target cells
- Prevents the generation of C5b-C9 membrane attack complex
- Neutralization of C3a and C5a anaphylatoxins

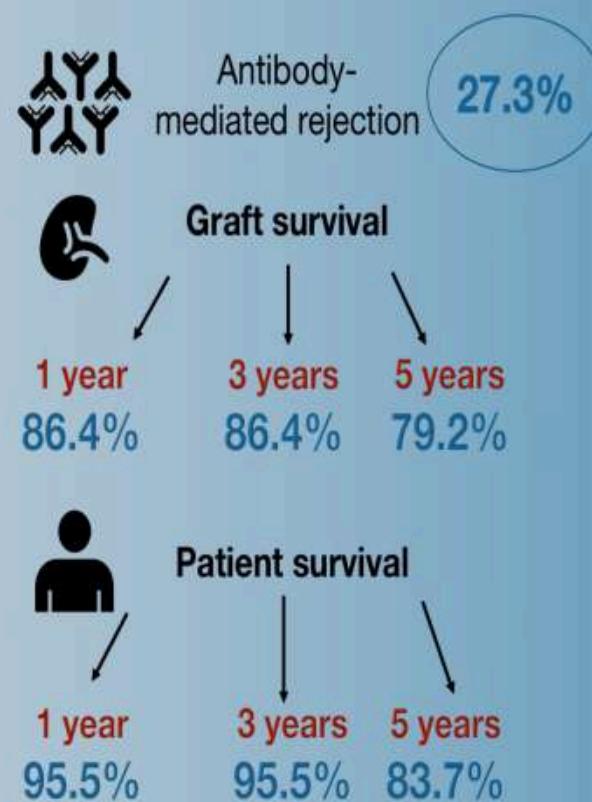
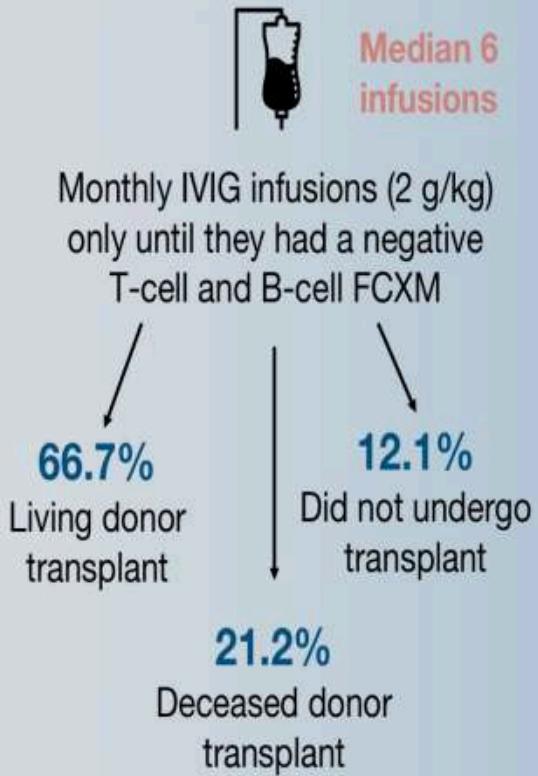


# Desensitization using IVIG alone for living-donor kidney transplant: impact on donor-specific antibodies

## METHODS AND RESULTS

 Retrospective study

 Medical record data



 Single center

 From January, 2003  
To December, 2014

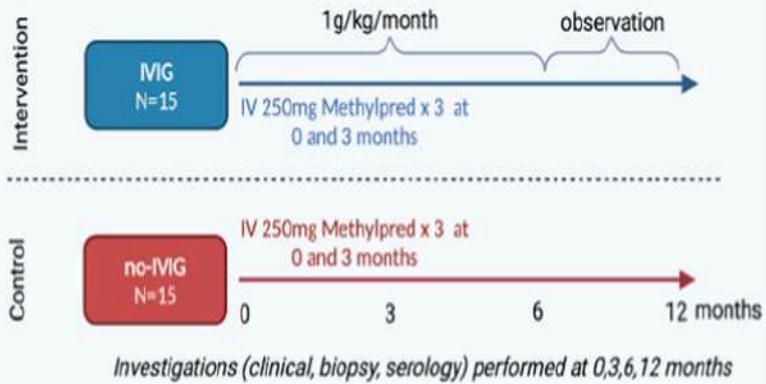
 45 sensitized patients

 33 patients continued in the study

 Positive cross-match (CDCXM ou FCXM) against potential living donor



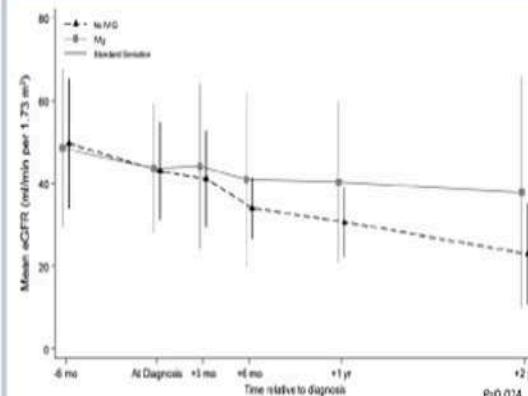
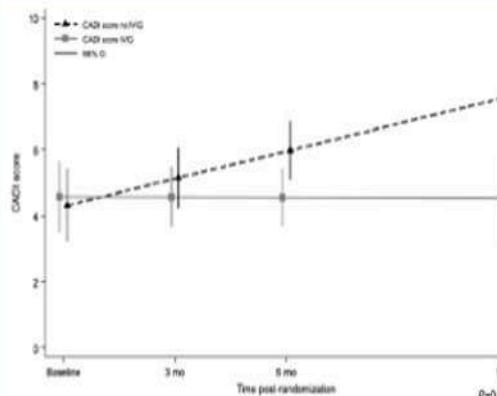
**Conclusions:** Desensitization using IVIG alone is an effective strategy, allowing successful transplantation in these highly sensitized patients.


**Referência:** Ulisses LRS, et al. Braz J Nephrol. 2022. DOI: <https://doi.org/10.1590/2175-8239-JBN-2021-0200>.

*Visual abstract by Jenyffer Ribeiro Bandeira*

# A randomized controlled trial of intravenous immunoglobulin vs standard of care for the treatment of chronic active antibody-mediated rejection in kidney transplant recipients

## Cohort/Methods



- Kidney transplant recipients with chronic active antibody mediated rejection were randomized 1:1 to intravenous immunoglobulin (IVIG) or standard of care.



## Endpoints:

- Primary** – chronic allograft damage index (CADI)
- Secondary** – estimated glomerular filtration rate (eGFR), donor specific anti-HLA antibodies (DSA), allograft & patient survival and intragraft mRNA expression.

## Findings:



1. IVIg stabilized histological damage
2. IVIg stabilized eGFR
3. IVIg did not reduce donor specific antibodies or proteinuria
4. Patient and allograft survival was similar at 12 months
  - At 5 yrs, 0 deaths in IVIG and 5 deaths in no-IVIG group
5. IVIg stabilized/reduced intragraft gene transcripts – particularly B-cell, T-cell, NK-cell and fibrosis associated transcripts.

**CONCLUSION:** In kidney transplant recipients with chronic active antibody mediated rejection, IVIG therapy stabilized allograft histology, function and intragraft gene transcripts.

# IV IG in post transplant infections

- Treating **Parvovirus B19, Polyoma BK virus and Cytomegalovirus (CMV)**.
- **Mechanisms:**
  - Broad-spectrum neutralizing antibodies against viruses.
  - Complement inhibition ( $\downarrow$  MAC,  $\downarrow$  C3 convertase activity).
  - Anti-inflammatory modulation of immune responses in infected tissues.
- In BKVN : - **Combining immunosuppression reduction with IVIG therapy** showed the most significant benefit for viral clearance.
- Parvo –B19 :- IVIG therapy contains neutralizing antibodies against HPV-B19 .Dose: IVIG 2 g/kg over 2–5 days

# Complications of IVIG

| Adverse effect                        | Predisposing factors                                                                                                                                                                                                                                                                                 |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flu-like symptoms                     | High dose, rapid infusion rate, accompanying infection, previous adverse effects                                                                                                                                                                                                                     |
| Dermatological adverse effects        | High dose, rapid infusion rate, accompanying infection, male patients with chronic inflammatory demyelinating polyneuropathy                                                                                                                                                                         |
| Arrhythmia and hypotension            | History of heart disease                                                                                                                                                                                                                                                                             |
| Transfusion-related acute lung injury | Rapid infusion rate                                                                                                                                                                                                                                                                                  |
| Thrombotic events                     | High dose, rapid infusion rate, advanced age, being bedridden, diabetes mellitus, hypertension, dyslipidemia, prior/current thrombosis, preexisting atherosclerotic disease, elevated serum viscosity, oral contraceptive use, hereditary hypercoagulable state, idiopathic thrombocytopenic purpura |
| Aseptic meningitis                    | High dose                                                                                                                                                                                                                                                                                            |
| Renal impairment                      | Rapid infusion rate, advanced age, renal insufficiency, nephrotic syndrome, diabetes mellitus, dehydration, sepsis paraproteinemia, nephrotoxic drugs, hemolysis, sucrose-containing preparations                                                                                                    |
| Hemolysis                             | High dose, rapid infusion rate, non-O blood group, underlying inflammatory state                                                                                                                                                                                                                     |