NEWER ANTIBIOTIC PLAZOMICIN

DR VILESH VALSALAN

CONSULTANT NEPHROLOGIST AND TRANSPLANT PHYSICIAN. KOCHI.

ACADEMIC CORDINATOR.

EXTRA CORPOREAL NEPHROLOGY GROUP [ECNG].

Beta lactamase classification

Class A:

KPCs that confer resistance to cephalosporins and to all carbapenems, and extended-spectrum beta-lactamases (ESBLs) that confer resistance to cephalosporins.

Class B

Metallo-beta-lactamases (MBLs), such as NDM, VIM, and IMP, which can lead to resistance to all carbapenems except monobactam.

Class C

AmpC (mostly chromosomal but can also be plasmidal), which confer resistance to cephalosporins.

Class D

OXAs that confer resistance mostly to carbapenems.

	ESBL and AmpC	KPC	OXA-48	MBL	Carbapenem Nonsusceptible <i>A. baumanii</i>	Carbapenem Nonsusceptible P. aeruginosa
Plazomicin	++	++	++	+/- a	•	-
Eravacycline	++	++	++	+b	++	
Temocillin	++ (urine breakpoint only)	++ (urine breakpoint only)			•	•
Cefiderocol	++	++	++	++	++	++
Ceftazidime/avibactam	++	++	++			+/-
Ceftolozane/tazobactam	++			-	-	+/- c
Meropenem/vaborbactam	++	++		-	?	?
Imipenem/relebactam	++	++	-	-	-	+/- d

Table 1- Possible applications of new antibiotics against Gram-negative bacteria based on resistant mechanisms.

Plazomicin

Plazomicin injection
500 mg/10 mL (50
mg/mL) is a singledose vial containing
plazomicin sulfate
equivalent to 500 mg
plazomicin free base

Therapeutic class:
Semisynthetic
aminoglycoside derived
from Sisomicin

Mechanism of Action:

Plazomicin acts by binding to bacterial 30S ribosomal subunit, thereby inhibiting protein synthesis

Indication: In patients 18 years of age or older for treatment of cUTI, including pyelonephritis caused by the following susceptible microorganism(s): *E. coli, K. pneumoniae, P. mirabilis, and E. cloacae.*

Potential Activity Against PBP3 inserts

Antibiotic	Target; Mechanism of Action
Ceftazidime Avibactam	PBP /β-lactamase enzyme; Cell wall synthesis inhibition
Meropenem- Vaborbactam	PBP/β-lactamase enzyme; Cell wall synthesis inhibition
Cefiderocol	PBP; Cell wall synthesis inhibition
Imipenem + Cilistatin/ Relebactam	PBP/β-lactamase enzyme; Cell wall synthesis inhibition
Aztreonam –Avibactam	PBP/β-lactamase enzyme; Cell wall synthesis inhibition
Plazomicin Medicina 2024, 60, 214. https://doi.org/10.3390/medicina600202	30S ribosomal subunit; Protein synthesis inhibition

Spectrum of Activity

Gram negative

Enterobacteriaceae family, such as *E. coli, K.* pneumoniae, Enterobacter spp., and Proteus spp

Grampositive S. aureus, including MRSA, VRSA, heteroresistant vancomycin-intermediate S. aureus and coagulase-negative staphylococci

Active against Broad range of

- ✓ AME producing Enterobacteriaceae,
- ✓ CRE (MBL, Oxa 48, KPC), ESBL producing Enterobacteriaceae
- ✓ Colistin resistant Enterobacteriaceae
- ✓ Aminoglycoside resistant

CLSI 2023 Breakpoints

Pathogen	MIC (mcg/mL)			Disk Diffusion (zone diameter in mm)		
	S	ı	R	S	1	R
Enterobacteriace ae	<u><</u> 2	4	<u>></u> 8	<u>≥</u> 16	14-15	<u><</u> 13

Plazomicin Dosing

Plazomicin has once-daily dosing, administered through a 30-minute IV infusion¹

Dosage regimen in adults with CrCl ≥90 mL/min

cUTI Infection	Dosage Regimenb	Duration of Treatment	
cUTI including	15 mg/kg every 24	4 to 7 days ^c	
Pyelonephritis	hours	4 to 7 days	

Dosage adjustments may be required based on change in renal function in adults with CrCl <90 mL/min;

Estimated CLcr	Recommended Dosage	Dosing Interval			
>60 mL/min	15 mg/kg	q24h			
>30 to 60 mL/min	10 mg/kg	q24h			
>15 to 30 mL/min	10 mg/kg	q48h			

Plazomicin is substantially excreted by kidneys, care should be taken in dose selection, and renal function should be monitored.

Synergistic Bactericidal Activity vs CRE

Key Results

Plazomicin (0.5 × MIC) in combination with colistin or fosfomycin, synergy was observed as well as a >3 log10 decrease in CFU/mL at 24 h

- When 1 × MIC of plazomicin was combined with colistin, meropenem or fosfomycin, bactericidal and synergistic activity was observed by 24 h for both isolates
- Plazomicin alone at 2 × MIC was rapidly bactericidal, achieving a 3
 log decrease in CFU/mL by 3 h of exposure, and the bactericidal
 activity was sustained up to the 6 h and 24 h time points against the
 two isolates tested

Combination of plazomicin with colistin, meropenem or fosfomycin showed in-vitro synergistic activity against carbapenemase-producing K. pneumoniae isolates despite high MICs to comparator antibiotics

Summary

- Once Daily Dosing unlike other AGs
- Activity against resistant pathogens (PBP3 inserts, AME producers, ESBL, CRE, Colistin resistant Enterobacteriaceae)
- Better activity against CRE & Colistin resistant
 Enterobacteriaceae than other AGs
- Proven efficacy in phase III trial Noninferior to meropenem
- Acceptable tolerability profile (Less nephrotoxicity than colistin)
- Synergy with meropenem, fosfomycin and colistin in CRE isolates
- WHO has categorized it as Reserve Antibiotic
- Useful targeted therapy for cUTI and acute pyelonephritis caused by resistant pathogens