OXALATE NEPHROPATHY

DR VILESH VALSALAN

CONSULTANT NEPHROLOGIST AND TRANSPLANT PHYSICIAN

KOCHI

ACADEMIC CORDINATOR -ECNG

INTRODUCTION

Definition of Oxalate Nephropathy:-

- 1.Progressive kidney disease.
- 2.Deposition of calcium oxalate crystals (birefringent on polarized light) within tubular epithelial cells, tubular lumens, and less frequently in the interstitium, associated with tubular injury and interstitial nephritis.
- 3.Exclusion of other causes of kidney disease (apart from nonspecific microvascular lesions and/or diabetesassociated glomerular lesions).
- 4.Ideally, a hyperoxaluria enabling-condition should be identified.

- Hyperoxaluria defined as 24-h urine oxalate of >40–
 45 mg/day.
- The urinary oxalate excretion tends to be higher in Primary hyperoxaluria >88 mg/day as opposed to 44–70 mg/day in enteric hyperoxaluria.
- The average age that symptoms appear is 5 years old.
- About 50% of children will experience kidney failure by age
 15. About 80% will experience kidney failure by age 30.

PRIMARY HYPEROXALURIA

Primary hyperoxaluria types 1 and 2, associated with peroxisomal AGT and cytosolic GRHPR deficiency respectively, result in accumulation of glyoxylate, which is converted to oxalate by LDH.

Primary hyperoxaluria 3 is caused by a defect in HOGA in mitochondria.

Causes of Secondary Hyperoxaluria and Oxalate Nephropathy

Increased intestinal oxalate absorption:-

- Chronic pancreatitis, Pancreatectomy.
- Use of orlistat (lipase inhibitor).
- Roux-en-Y gastric bypass, Small bowel resection.
- Crohn's disease, Celiac disease.
- Cystic fibrosis.
- Use of somatostatin analogue.

Increased dietary oxalate or precursor intake

Rhubarb, Averrhoa carambola (star fruit), Averrhoa bilimbi, tea, nuts, "juicing"
 Vitamin C, ethylene glycol, methoxyflurane, naftidrofuryl oxalate.

Decreased intestinal bacterial oxalate degradation

Antibiotic use.

Others

Obesity, genetic variations in oxalate transporters?^a

OXALATE NEPHROPATHY

- (A) Intratubular translucent polyhedral or rhomboid crystals (black arrows) on light microscopy (hematoxylin and eosin stain, original magnification, ×20).
- (B) Crystals shown as birefringent under polarized light (original magnification, ×5). Biopsy also shows acute tubular injury and mild interstitial inflammation.

DIAGNOSTIC ALGORITHM

Diagnosis of Primary Hyperoxaluria

TREATMENT OF OXALATE NEPHROPATHY

Treatment	Rationale	Supporting evidence
High fluid intake (urine output >2-3 L/d)	Reduces urine calcium oxalate supersaturation.	Reduces stone formation.
Low-oxalate diet	Reduces bioavailability of intestinal oxalate.	Reduces urinary oxalate excretion in small-sized studies; caveat: comparisons were based on a low- oxalate diet compared to a very-high- oxalate diet.

intestinal calcium).

Low-fat diet

Normal-calcium diet

Calcium supplements

Oxalate decarboxylase

Oxalobacter formigenes administration

NLRP3-specific inflammasome inhibitor

Cholestyramine

Reduces intestinal oxalate absorption

Avoid low-calcium diets, which lead to

Reduce bioavailability of intestinal

Binds intestinal bile acids, reduces

diarrhea, and binds oxalate in vitro.

(by increasing bioavailability of

more free intestinal oxalate.

oxalate and its absorption.

Increases intestinal oxalate

Degrades intestinal oxalate.

Reduces crystal-induced kidney

degradation.

damage.

Reduces urinary oxalate excretion in

Reduces urinary oxalate excretion in

Reduces urinary oxalate excretion but

may lead to hypercalciuria. Calcium

Studies show contradicting results.

Reduces urinary oxalate excretion in rat model and plasma oxalate levels in

Reduces urinary oxalate excretion in rat model and in phase 3 pilot study in

Reduces calcium-oxalate crystal-

induced kidney fibrosis in mouse

dialysis patients with primary hyperoxaluria (phase 2 study).

citrate may be more bioavailable than

small studies.

small-sized studies.

calcium carbonate.

humans.

model.

TRANSPLANT

- Combined liver and kidney transplant is the mainstay of treatment in primary hyperoxaluria.
- Sequential liver followed by kidney transplant in patients with less severe renal disease.

 Recurrence of oxalate deposition in the graft due to secondary hyperoxaluria needs continuous monitoring and medical management with early loss of graft.

Efficacy and Safety of Lumasiran in Patients With Primary Hyperoxaluria Type 1, Results From a Phase III Clinical Trial

Primary Hyperoxaluria Type 1

Age ≥6 years

eGFR ≥30 mL/min/1.73 m²

6-month doubleblind placebo controlled period followed by an extension period

UOx, Urinary Oxalate; ULN, upper limit of normal

PERIOD
(Month 36)

(Month 36)

Mean 24-hour UOx reduction from baseline % of patients who reached 24-hour UOx excretion ≤1.5 x ULN

Lumasiran/ lumasiran group (n=24)

36 months of lumasiran

Placebo/ lumasiran group (n=13)

30 months of lumasiran

63%

58%

76%

92,

eGFR remained stable and medullary nephrocalcinosis remained stable or improved

The most common lumasiran-related adverse events were mild, transient injection-site reactions

KIREPORTS Kidney International Reports Saland J et al, 2024

Visual abstract by: Edgar Lerma, MD, FISN X @edgarvlermamd Conclusion In patients with primary hyperoxaluria type 1, longer-term lumasiran treatment led to sustained reduction in urinary oxalate excretion, with an acceptable safety profile and encouraging clinical outcomes.

Multicenter Long-term Real World Data on Treatment with Lumasiran in Patients With Primary Hyperoxaluria Type 1

Met	hods	and	cohort	
30	Multio	enter		

33 genetically proven PH1, 13 on dialysis

14 adults, 14 females

Age at starting treatment: 2day-59yrs

Lumasiran treatment 6-27m (med 18)*

* Lumasiran dosing:

1) <10 kg= Loading: 6mg/kg monthly for 3 doses; Th 3mg/kg once monthly (Begin after 1m of loading) 2) 10-20 kg= Loading: 6mg/kg monthly for 3 doses; Then 6mg/kg quarterly (Begin after 1m of loading) 3) >20 kg= Loading: 3mg/kg monthly for 3 doses; Then 3mg/kg quarterly (Begin after 1m of loading)

	Findings Results are expressed as Mean (SD)		Patients with preserved kidney function			
			At baseline	At 3 months	At 12 months	At 18 months
		Mean urine oxalate (mmol/1.73m²/d)	1.88 (0.8)	0.73 (0.26)**	0.72 (0.3)**	0.65 (0.2)**
en		Mean urine glycolate (mmol/1.73m²/d)	2.13 (2.3)	3.54 (1.3)**	5.09 (2.6)**	5.88 (5.7)**
es	Ţ.	Mean plasma oxalate (mmol/1.73m²/d)	10.65 (4.0)	6.96 (4.1)	9.31 (3.6)	9.9 (3.6)
	Į:	Mean plasma glycolate (mmol/1.73m²/d)	67.21 (88.2)	85.43 (46.8)	315.8 (302.8)**	240.9 (174)**
/rs	Q	Mean eGFR	70.6 (25.5)	70.6 (25.5) Vitamin B6		74.1 (27.7)
t	Mean eGFR (ml/min/1.73m²)		71.3 (18.8)	Non Vitamin B6		86.4 (25.4)
	** mean	s significantly different as compared to be	Dialysis patients			
Then	Ţ:	Mean plasma oxalate (mmol/1.73m²/d)	78.0 (40.2)	37.2 (16.9)**	43.1 (16.3)	59.3 (23.8)
s;	P	Mean plasma glycolate (mmol/1.73m²/d)	197.2 (220)	337.4 (294)**	443.3 (638)	259.5 (271)

Martin-Higueras C et al. 2023

Visual abstract by:
Abdul Qader, MD

@md_abdulqader83

Conclusion Lumasiran treatment is safe and efficient. Not all patients with preserved kidney function experienced satisfactory reduction of urinary oxalate excretion in quarterly dosing. On whether or not a dosage (interval) adjustment is advisable needs clarification. In dialysis, lack of plasma oxalate reduction may relate to dissolving systemic oxalate deposits.